The Top 5 List:
Finding and Fixing the Most Important Specimen Compromisers for Biomarker Measurement

Carolyn Compton, MD, PhD
Chair, Scientific Advisory Committee, Indivumed GmbH
Professor of Life Sciences, ASU
Professor of Laboratory Medicine and Pathology, Mayo Clinic
Adjunct Professor of Pathology, Johns Hopkins
CMO, National Biomarker Development Alliance
CMO, ASU Complex Adaptive Systems Institute

Biomarkers and Diagnostics World Congress
Philadelphia, PA
May 196, 2016
Getting to Precision Medicine: Biomarkers Are the Driving Force

Vision of 21st Century Medicine: Greater Efficiency and Efficacy

- Better understanding of the biology of disease
- Diagnosis based on molecular characterization of disease
- Rational treatment using molecularly targeted agents
- Connection of research and clinical practice in seamless feedback loop

ALL OF THESE ARE BIOMARKER-DRIVEN
Biomarker: A measurable characteristic used as an indicator of a biological state or condition

Usually a protein or a set of proteins measured in cells, tissue, blood but may be any class of biomolecule – DNA, RNA, miRNA, other
Biomarkers: Many Are Reported, Few Are Qualified

Estimated number of papers documenting thousands of claimed biomarkers

150,000

Estimated number of biomarkers routinely used in the clinic

100

Source: Poste G. Nature 469, 156-157 13 Jan 2011
Sad Status of Protein-Based Biomarkers

- Few biomarker candidates are being approved for clinical use by FDA/EMA
- Approval rate is steadily declining rate

Source: Based on data from FDA and Plasma Proteome Institute
Amgen attempts to verify results of 53 landmark studies in oncology and hematology; Only 6 (11%) could be reproduced.
How Widespread Are Failures to Reproduce Published Biomedical Science?

• Mass spec diagnostic for ovarian cancer – results due to experimental artifact and bias – control and experimental groups run separately (Lancet, 2002)

• Five of 7 largest molecular epidemiology cancer studies did not classify patients better than chance (JNCI, 96:2004)

• Microarray drug sensitivity signatures – from cell lines – to predict patient response (named one of top100 breakthroughs in 2006) could not be reproduced in large clinical trial in 2009 (Nature Medicine, 2006)

• Of 18 published microarray studies, only 2 were reproducible (Science, 2011)

• Bayer scientists can reproduce only 20-25% of 67 key published experiments and halts 2/3 of its target validation projects as a result (Nature Reviews Drug Discovery 10, 712 doi:10.1038/nrd3439-c1, 2011)

• Amgen’s team of 100 scientists could reproduce only 11% of 53 seminal studies published on reported drug targets or toxicity (Nature 483, 531-533 doi:10.1038/483531a, 2012)
Reproducibility Rate of 10-30% in Academic Biomedical Science

• For biomedical businesses relying on academic discovery to drive product development (like pharma), flipping a coin would be superior to reading *Science* or *Nature* in making business decisions.

• US government spends nearly $31 billion in science funding through the NIH every year, mainly for research grants to academic scientists
 - 10% reproducibility rate ➞ 90% of this money ($28 billion) is wasted

• Wasted money, wasted time, lost opportunities

• Pollution of the biomedical literature by bad studies and bad data:
 - What do we really know? What can we really trust?

• Why should patients and the public believe in what we do?
Irreproducibility in Biomedical Research: A Crisis in Confidence (Public View)

Unreliable research

Trouble at the lab

Scientists like to think of science as self-correcting. To an alarmist, it is
unreliable research.

Lies, Damned Lies, and Medical Science

Much of what medical researchers conclude their studies are misleading, exaggerated, or flat-out wrong, so why are doctors—to a striking extent—still drawing upon these findings in their everyday practice? Dr. John Ioannidis has spent his career challenging his peers by exposing their bad science.

By David H. Freedman

Why Most Published Research Findings Are False

John P. A. Ioannidis

Published: August 30, 2005 DOI: 10.1371/journal.pmed.0020124

Abstract

There is increasing concern that most current published research findings are false. The probable reasons are: the number of other studies on the same question; and, importantly, the ratio of true to no relation framework, a research finding is less likely to be true when the studies conducted in a field are few and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, and other interest and prejudice; and when more teams are involved in a scientific field in chase of a design's and set of settings, it is more likely for a research claim to be false than true. Moreover, for many studies, it is more accurate measures of the prevailing bias. In this essay, I discuss the implications of these findings.

Scientists' Elusive Goal: Reproducing Study Results

By Gautam Naik

Two years ago, a group of Boston researchers published a study describing how they had destroyed a protein called STK33. Scientists at biotechnology firm Amgen Inc. quickly pounced on the result of a dozen researchers to try to repeat the experiment with a goal of turning the findings into a drug. "This is one of medicine's dirty secrets: Most results, including those that appear in top-flight peer-reviewed journals, can't be reproduced."
Irreproducibility in Biomedical Research: A Cultural Norm (Researcher View)

In science, irreproducible research is a quiet crisis

- Few scientists attempt to repeat their own studies
- Publications often based on the one time out of multiple attempts that it actually worked
- External validation (by another lab) is extremely rare
- Few, if any analyses, focus on the quality and consistency of the biological materials that are the test subjects
Quality Data Begins with Quality Analytes

Garbage in...

Purgamentum init, exit purgamentum.

...Garbage out

Diamonds in.....

Modified from Jerry Thomas
Here Today, Gone Tomorrow

You can’t even be sure you know what you thought you did!
White House Takes Notice of Irreproducibility in Science and Seeks Public Input

August 21, 2014

• Federal Register:

• The Office of Science and Technology Policy and the National Economic Council request public comments to provide input into an upcoming update of the *Strategy for American Innovation*……..

• “Given recent evidence of the irreproducibility of a surprising number of published scientific findings, how can the Federal Government leverage its role as a significant funder of scientific research to most effectively address the problem?”
Taking Action

• Public sector: NIH Rigor and Reproducibility Workshop, 2014
 – Joint meeting with Science and Nature publishing groups
 – Refers to rigor in use/description of biological reagents (antibodies), cell lines and animals, but **omits reference to human biological materials**

• Private Sector: The Reproducibility Project
 – Joint venture between Science Exchange and Center for Open Science
 – Independently replicating a subset of research results from 50 high-impact cancer biology studies published from 2010-2012 using the Science Exchange network of expert scientific labs also **omits reference to human biological materials**
Rigor and Reproducibility for Biomarker Measurement in the Lab: How Is It Assured?

- **Place** where test is done
 - CLIA/CAP laboratory accreditation
- **People** doing the test
 - Education
 - Proficiency testing
 - Licensure
- **Platforms** used for testing
 - CDRH approved devices
- **Processes** followed for testing
 - SOPs
 - Quality management
- **Patient samples** to be tested
 - WILD WEST
Biospecimens – A Likely Source of Biomarker Irreproducibility at Every Level

PERSONALIZED CANCER CARE

QUALITY HERE

Biospecimen Analysis

Biospecimen Collection

Biospecimen Processing and Banking

Molecular Data

Diagnosis / Therapy

DETERMINES QUALITY HERE
Pre-analytical Factors Affect Both Molecular Composition and Molecular Quality

Specimen is **viable** and biologically reactive

Molecular composition subject to further alteration/degradation

Factors (examples):
- Antibiotics
- Other drugs
- Type of anesthesia
- Duration of anesthesia
- Arterial clamp time

Factors (examples):
- Time at room temperature
- Temperature of room
- Type of fixative
- Time in fixative
- Rate of freezing
- Size of aliquots

Pre-acquisition

Post-acquisition
Cold Ischemia and Molecular Assay Results

HER2 IHC and FISH in Breast Cancer:
Loss of Biomarker Signal with Time to Fixation

pMAPK IHC of Colon Cancer:
Gain of Biomarker Signal with Time to Fixation

Without knowledge about tissue processing methods and assurance of rapid tissue fixation, protein expression data are unreliable, and understanding of pathway activity is impossible.

- Hartmut Juhl, CEO
Indivumed

Hartmut Juhl, Indivumed GmbH, BRN
Expression of >15% of Genes and Up to 60% of Selected Proteins Change >2-fold during Surgery and Postsurgical Processing Time

Gene Expression
Pre vs. Post Surgery

Protein Expression
Pre vs. Post Surgery
Blood Collection and Plasma Processing: Biomarkers and Circulating Tumor Cells
And It’s Getting Far More Challenging

It all starts with the “Right Stuff”.

Biospecimens and Analysis of Molecular Pathway/Network Perturbations

Multiplex Assays and Complex Signal Deconvolution Algorithms

Novel Instrumentation, Automation and Large Scale Informatics

Patient Profiling, Rational Rx and Health Monitoring

Courtesy of G. Poste
Powerful Tools: Powerful Risks

• Technology development is exponential, not linear

• Analysis technologies become ever faster, better, cheaper

• No technology can spin straw into gold – you must begin with gold!

• The technological capacity exists to produce low-quality data from low-quality analytes with unprecedented efficiency

• We now have the ability to get the wrong answers with unprecedented speed
The Right Answers Depend on the Right Stuff

Tumor cells are typically mixed with normal tissue. Tumor content may be enriched by macro-dissection.

Tumors have background of wild-type DNA. Challenge to detect low % mutant alleles.

Tissue fixation damages DNA. Necrotic cells may not have amplifiable DNA.

Natural and introduced inhibitors may interfere with amplification.

FFPET = formalin-fixed, paraffin-embedded tissue
Molecular Analysis for Therapy Choice: The NCI MATCH Trial To Link Targeted Cancer Drugs to Gene Abnormalities

IN THE LAB

Shoddy biopsies deny cancer patients a shot at personalized treatment

Shoddy tumor biopsies are preventing cancer patients from receiving personalized therapies.

By ELIE DOLGIN @eliedolgin
JANUARY 22, 2016
The Process of Biomarker Development Is Siloed and Fragmented

Early Discovery
(Biology Verified Patient Samples)

Translatable Discovery
(Clinical Measure Established)

Assay Development
(Analyte - Reagents - Technology - Robust)

Assay Performance
(Analytical Validation)

Biomarker Qualification
("Fit for Clinical Purpose")

Biomarker Validation
(Clinical Validation)

Academia

Physicians

Regulators

Industry

Patients

Funding Agencies

Professional Bodies
Realizing an End-To-End, Standards-Based Approach to Biomarker Development

- Early Discovery (Biology Verified Patient Samples)
- Translatable Discovery (Clinical Measure Established)
- Assay Development (Analyte - Reagents - Technology - Robust)
- Assay Performance (Analytical Validation)
- Biomarker Qualification ("Fit for Clinical Purpose")
- Biomarker Validation (Clinical Validation)

Standards are needed at every step and across the continuum
Biospecimens Flank End-To-End Biomarker Development

The Continuous Feedback Loop of Quality
55 Attendees – Representing All Stakeholder Groups and Points of View

- Academic genomics experts (scientists: basic and translational)
- Academic proteomics experts (scientists: basic and translational)
- Expert molecular pathologists
- CAP leadership:
 - President
 - President Elect
 - Immediate Past President
- Surgeons
- Patient advocacy group leaders: JDRF
- Funders: NCI
- Regulators: FDA
- Leadership of professional societies: ASCO, AACR
- Payers: CMS, Palmetto, Aetna, BC/BS
- Industry (Pharma, Platform manufacturers, Tissue providers): Illumina, Genetech, Caprion, Indivumed, Becton-Dickenson, Novartis, Abbott)
Goal:

- Converge (agree) on the pre-analytical steps in the biospecimen lifecycle that MOST compromise the quality of tissue and blood for cutting edge molecular analysis: NGS and proteomics
- Identify where the greatest value can be delivered in the control of pre-analytical variation (biggest quality bang for the buck)
NBDA Genomics Convergence Conference: Defining a Benchmark for Patient Biospecimens

Think: Pareto Principle (20/80 rule)

For many events 80% of the effects come from 20% of the causes
Top 5 Lists

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Blood/Serum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Time to stabilization</td>
<td>1. Time to processing</td>
</tr>
<tr>
<td>– Cold ischemia time</td>
<td></td>
</tr>
<tr>
<td>2. Method of processing</td>
<td>2. Method of acquisition</td>
</tr>
<tr>
<td>– Section thickness</td>
<td>– Tube type</td>
</tr>
<tr>
<td>– Mass/volume ratio</td>
<td>– Draw order</td>
</tr>
<tr>
<td>– Temperature</td>
<td>– Draw parameters (needle, vein vs. line)</td>
</tr>
<tr>
<td>3. Method of stabilization</td>
<td>– Volume of tube fill</td>
</tr>
<tr>
<td>– Type of fixative</td>
<td></td>
</tr>
<tr>
<td>– Time in fixative</td>
<td>3. Method of stabilization</td>
</tr>
<tr>
<td>4. Tissue processor variables</td>
<td>– Tube type (stabilizer preset or not)</td>
</tr>
<tr>
<td>– Quality of processing fluids</td>
<td>– Tube inversions</td>
</tr>
<tr>
<td>– Paraffin type</td>
<td>4. Method of processing</td>
</tr>
<tr>
<td>– Paraffin temperature</td>
<td>– Centrifugation speed/time</td>
</tr>
<tr>
<td>5. Storage conditions</td>
<td>– Temperature</td>
</tr>
<tr>
<td>6. (Metadata to be collected)</td>
<td>5. Storage conditions</td>
</tr>
<tr>
<td></td>
<td>– Freeze/thaw cycles</td>
</tr>
<tr>
<td></td>
<td>6. (Metadata to be collected)</td>
</tr>
</tbody>
</table>
Actions In Progress

- Pre-analytics for Precision Medicine Project Team: College of American Pathologists
- Verification of the Top 5 lists for Tissue and Blood Specimens from NBDA Convergence: literature review, CLIA, ISBER, NCI
- Develop a Top 5 for cytology specimens
- Establish performance metrics around the Top 5’s
 - DATA-DRIVEN
 - PRACTICAL
- Educate pathology workforce (pathologists, pathology assistants, medical laboratory technicians, phlebotomists)
- Implement and enforce performance metrics through the CAP Laboratory Accreditation Program checklists
- Seek new reimbursements codes, if needed
- Seek reinforcement through FDA guidance, research funder requirements
Envisioned Result

Historic transformation of practice with far-reaching impact:

• Variably variable and unknown quality → uniform, known quality that is consistent with molecular analysis

• Simultaneous impact on both clinical and research results

• “Convenience samples” become fit for purpose!

• A “bar” is established that may be electively raised as needed to meet requirements of specific analysis types/platforms
 – There will, at last, BE a bar to raise
 – It’s about time
Specimen Quality Is A Front-loaded Issue

“If you don’t have the time to do it right, when will you have the time to do it over?”

- John Wooden, Coach UCLA
Our Challenge

Garbage in…

...Garbage out
The Top 5 List:
Finding and Fixing the Most Important Specimen Compromisers for Biomarker Measurement

Carolyn Compton, MD, PhD
Chair, Scientific Advisory Committee, Indivumed GmbH
Professor of Life Sciences, ASU
Professor of Laboratory Medicine and Pathology, Mayo Clinic
Adjunct Professor of Pathology, Johns Hopkins
CMO, National Biomarker Development Alliance
CMO, ASU Complex Adaptive Systems Institute

Biomarkers and Diagnostics World Congress
Philadelphia, PA
May 196, 2016